Search results for "Prime factor"
showing 7 items of 7 documents
Semipredictable dynamical systems
2015
A new class of deterministic dynamical systems, termed semipredictable dynamical systems, is presented. The spatiotemporal evolution of these systems have both predictable and unpredictable traits, as found in natural complex systems. We prove a general result: The dynamics of any deterministic nonlinear cellular automaton (CA) with $p$ possible dynamical states can be decomposed at each instant of time in a superposition of $N$ layers involving $p_{0}$, $p_{1}$,... $p_{N-1}$ dynamical states each, where the $p_{k\in \mathbb{N}}$, $k \in [0, N-1]$ are divisors of $p$. If the divisors coincide with the prime factors of $p$ this decomposition is unique. Conversely, we also prove that $N$ CA w…
On the Neron-Severi group of surfaces with many lines
2008
For a binary quartic form $\phi$ without multiple factors, we classify the quartic K3 surfaces $\phi(x,y)=\phi(z,t)$ whose Neron-Severi group is (rationally) generated by lines. For generic binary forms $\phi$, $\psi$ of prime degree without multiple factors, we prove that the Neron-Severi group of the surface $\phi(x,y)=\psi(z,t)$ is rationally generated by lines.
Prime Factors of Character Degrees of Solvable Groups
1987
Local Finite Group Theory
1982
The word local is used in finite group-theory in relation to a fixed prime p; thus properties of p-subgroups or their normalisers, for example, are regarded as local. In the case of a soluble group, then, everything is local, but an insoluble group also has global aspects. Now the local behaviour influences the global, that is, there are theorems in which the hypothesis involves only p-subgroups and their normalisers, but the conclusion involves the whole group. This chapter is an introduction to theorems of this sort.
Fixed point spaces, primitive character degrees and conjugacy class sizes
2006
Let G be a finite group that acts on a nonzero finite dimensional vector space V over an arbitrary field. Assume that V is completely reducible as a G-module, and that G fixes no nonzero vector of V. We show that some element g ∈ G has a small fixed-point space in V. Specifically, we prove that we can choose g so that dim C V (g) < (1/p)dim V, where p is the smallest prime divisor of |G|.
BOUNDING THE NUMBER OF IRREDUCIBLE CHARACTER DEGREES OF A FINITE GROUP IN TERMS OF THE LARGEST DEGREE
2013
We conjecture that the number of irreducible character degrees of a finite group is bounded in terms of the number of prime factors (counting multiplicities) of the largest character degree. We prove that this conjecture holds when the largest character degree is prime and when the character degree graph is disconnected.
A variation on theorems of Jordan and Gluck
2006
Abstract Gluck proved that any finite group G has an abelian subgroup A such that | G : A | is bounded by a polynomial function of the largest degree of the complex irreducible characters of G . This improved on a previous bound of Isaacs and Passman. In this paper, we present a variation of this result that looks at the number of prime factors. All these results, in turn, may be seen as variations on the classical theorem of Jordan on linear groups.